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a  b  s  t  r  a  c  t

Rangelands  occupy  a large  portion  of  the Earth’s  land  surface  and  provide  many  ecosystem  services to
human  populations  around  the  world.  Increasingly,  however,  the  ability  of  rangelands  to  continue  provid-
ing these  services  is  challenged  by anthropogenic  influence.  There  is  an  urgent  need  to  monitor  changes
in  rangelands  through  time  and  across  large  geographic  areas.  Current  field-based  methods  used  to  assess
and  monitor  rangelands  are  limited  because  of  their  inability  to account  for spatial  and  temporal  varia-
tion.  An  alternative  approach  is presented  to  assess  rangelands  using  high  resolution  imagery  as enhanced
ground  samples  and multi-spatial  remote  sensing  imagery  to  quickly,  cheaply,  and  effectively  map  basic
land  cover  components.  High-resolution,  ground-based  natural  color  vertical  photography  captures,  in
space  and  time,  percent  cover  of vegetative  and abiotic  components  at the  plot  level.  This  imagery  main-
tains  a visual  history  of percent  cover  allowing  other  investigators  the  ability  to repeat  the  observation  or
use  other  sampling  techniques  to  extract  improved  or additional  information.  These  plot-based  measures
are  then  linked  to  airborne  or satellite  acquired  imagery  allowing  for extrapolation  of  ground  measure-
ments  across  large  landscapes.  Linking  plot-based  measures  to  remotely  sensed  imagery  can  allow  for
documentation  of  change  across  the  past  30 years  utilizing  Landsat  imagery.  Our  process  was  applied  to
a sagebrush-steppe  landscape  in northern  Utah  with  promising  results.  Extrapolation  of  percent  vegeta-
tion  cover  data  extracted  from  ground-based  natural  color  vertical  photography  to  1 m  resolution  Ikonos
imagery  using  regression  tree analysis  resulted  in  an overall  R2 value  of  0.81  while  an  extrapolation  to
30 m  Landsat  Thematic  Mapper  resulted  in an  R2 of  0.90  using  a  5-fold  cross-validation.  A comparison
between  independently  acquired  ground  measurements  from  multiple  time  intervals  showed  a  moder-
ately strong  correlation  of R2 =  0.65  for  Landsat  Thematic  Mapper.  This  technique  has  great  potential  to
place  land  cover  change  and  rangeland  health  in  a contextual  perspective  that  has  not  been  available
before.  In  this  way,  past management  practices  can  be  evaluated  for their effectiveness  in altering  basic
cover  components  of rangelands.  With  this  hindsight,  improved  management  prescriptions  can  be  devel-
oped providing  a valuable  tool in  assessing  public  land  grazing  allotments  for  renewal  or  habitat  quality
for sensitive  wildlife  species  like greater  sage-grouse.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Rangelands are widely distributed and occupy a large portion of
the world’s available land. Estimated global land area of rangelands
varies widely from as little as 30% to nearly 70% based on the defini-
tion of rangelands (Lund, 2007; Breckenridge et al., 2008; Food and
Agriculture Organization of the United Nations, 2009). Nonetheless,
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rangelands support almost one-third of the global human popula-
tion, store about half of the global terrestrial carbon, support 50%
of the world’s livestock, and contain over one-third of the biodiver-
sity hot spots (James et al., 2013). The monitoring and assessment
of rangelands is thus of critical importance.

Monitoring of rangelands, however, is complicated by the high
degree of spatial and temporal variation in vegetation and soil.
To provide meaningful information about rangelands requires an
evaluation across large landscapes and over extended periods
of time (Booth and Tueller, 2003; Palmer and Fortescue, 2003;
Washington-Allen et al., 2006). Moreover, semi-arid and arid
rangelands are significantly influenced by the quantity and timing
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of precipitation creating extreme inter-annual variation (Noy-Mier,
1973; Sharp et al., 1990). Evaluating rangelands and their response
to specific management (e.g., grazing) can therefore be difficult
(Pickup et al., 1998; Blanco et al., 2009). Traditional field-based
monitoring is usually insufficient to accurately assess ecological
status or to detect important changes across large geographic
areas outside of the plot extent (National Research Council, 1994;
Donahue, 2000). Increasing the number of traditional ground-
based monitoring plots across large spatial and temporal scales is
often prohibitively expensive and still has limited evaluative capa-
bilities (Friedel et al., 1993; Bastin et al., 1993; West, 1999).

The inadequacies of traditional ground-based sampling for
rangeland assessment could be the reason that the largest range-
land management entity in the United States, the United State
Department of Interior – Bureau of Land Management (USDI-BLM),
has only inventoried an average of 0.6% of its national land hold-
ings annually (∼113 million ha) from 1998 to 2007, resulting in 5.4%
being inventoried over this time period (USDI-BLM, 2012). Often,
land-use plans are renewed without formal assessment of range-
lands as required by the National Environmental Protection Act
(NEPA). Most grazing allotment renewals in the past few decades
have been completed via a “grazing rider” attached to the Depart-
ment of Interior’s Appropriation Bill. This renewal process keeps
in place the terms and conditions of previous allotment manage-
ment plans without assessing whether “Standards and Guidelines”
of rangeland health are satisfied. This lack of feedback limits the
ability of land managers to improve knowledge of the systems’
ecology and to respond adaptively (Boyd and Svejcar, 2009).

The application of remote sensing technology to rangeland
assessment has the potential to remove some of these limita-
tions. While coarse resolution remote sensing technology cannot,
directly identify plant species, it has had success in determining
percent ground cover using vegetation indices like the normalized
difference vegetation index (NDVI) at coarse resolution like 30 m
Landsat imagery. Percent ground cover is not, in itself, an indica-
tor of range condition, but when assessed over large landscapes and
over long time periods, the patterns of percent ground cover change
caused by management action can be separated from changes due
to climatic variability, soils, or geomorphology (Pickup et al., 1994,
1998).

Using remote sensing technology, Homer et al. (2012) mapped
percent cover of basic vegetative components over big sagebrush
(Artemisia sp.) landscapes of the western United States. They used
regression tree analysis on multi-scale imagery with three nested
spatial scales including traditional on-the-ground field sampling,
Quickbird 2.4 m imagery, and Landsat 30 m imagery to predict
percent cover. Additionally, NDVIs were created from Quickbird
and Landsat imagery to predict cover. To assess the accuracy of
the multi-scale and NDVI predictions, correlation coefficients were
determined using a linear regression of the predicted values against
independent ground-based vegetation measurements. The cor-
relation coefficients of the nested multi-scale predictions were
R2 = 0.51 for Quickbird imagery and R2 = 0.26 for Landsat imagery.
The Quickbird and Landsat NDVI predictions were R2 = 0.18 and
R2 = 0.09, respectively. These results, while promising for very large
scale assessment and planning, are not precise enough on a scale
to support local adaptive resource management.

The need for cost effective assessments of rangeland with
high spatial resolution and improved accuracy for management
applications has stimulated research in the use of high-resolution
photography for rangeland assessment. High resolution, nadir pho-
tography can serve as a realistic ground plot. It is information rich,
understandable to a broad base of people, and the unanalyzed
information can be archived for future use. This ability to revisit
imagery that documents actual field conditions at the time of col-
lection is not possible through conventional field data collection

Fig. 1. Study area location in relation to the United States, Utah, and Deseret Land
and Livestock (DLL). The actual study area is bounded north to south by 41.439◦ N
and  41.258◦ N and east to west by 111.057◦ W and 111.195◦ W.

techniques. Archived field plot imagery can therefore be reviewed
by many observers at later times using potentially improved or
multiple techniques to record land cover. High resolution imagery,
less than 1 cm,  is being used by a number of researchers (e.g.,
Breckenridge et al., 2011; Cagney et al., 2011; Karl et al., 2012; Mirik
and Ansley, 2012). Results to date are mixed, but strong correla-
tion coefficients of R2 = ∼0.90 have been observed for bare ground.
Using high resolution imagery, Pilliod and Arkle (2013) found that
photography-based grid point intercept (GPI) in Great Basin plant
communities was strongly correlated to line point intercept (LPI)
but it was  20–25 times more efficient, identified 23% more plant
species, and was more precise in determining percent cover. Fur-
thermore, they found that GPI could precisely estimate cover of
basic vegetation components when they exceeded 5–13% while LPI
cover estimates had to exceed 10–30% cover for equal precision.
Detecting change when percent cover is low is very important in
arid lands where land cover is typically sparse.

The method presented in this paper integrates the use of high
resolution photography as enhanced ground samples and as a
training dataset for multiple scales of remotely sensed imagery.
It models the percent cover of bare ground, shrub, and herbaceous
vegetation cover across big sagebrush (Artemisia sp.) landscapes
in the western United States. It can provide information on sage-
brush dominated rangelands at spatial scales from millimeters to
kilometers, across multiple years. We show that this method maps
commonly used and functionally important cover types with con-
siderable success and increased precision.

2. Methods

2.1. Study area

The study area is part of the 20,263 ha Deseret Land and Live-
stock (DLL) ranch in Rich County, UT, USA (Fig. 1) in the Middle
Rocky Mountains physiographic region. The ranch ranges in eleva-
tion from 1928 to 2270 m.  Annual precipitation has ranged from
11 cm to 40 cm with an average of 24 cm since 1897. Temperatures
during this same period averaged a low of −18 ◦C in January and
a high of 28 ◦C in July (Western Regional Climate Center, 1986).
Dominant landcover types include short sagebrush (A. nova and A.
arbuscula) and big sagebrush (A. tridentata).  Where big sagebrush
communities had been treated (mechanical, fire, or herbicide),
crested wheatgrass (Agropyron desertorum) was  dominant. The
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Fig. 2. Differences in detail of imagery used in the assessment of rangelands across multiple spatial and temporal scales. Pane 1 shows the high detail of the 2 mm  GBVP
imagery as well as the color coded nails used for accuracy assessment. Pane 2 displays the 1 m Ikonos imagery. Pane 3 illustrates the coarser 30 m Landsat imagery. Water
and  sparse vegetation are also discernable in Panes 2 and 3.

study area consisted of 12 ecological sites, four of which (semi-
desert stony loam, semi-desert clay, upland loam, and semi-desert
loam) accounted for 95% of the land area. Ecological sites are a dis-
tinctive kind of land with specific characteristics that differ from
other kinds of land in its ability to produce a distinctive kind and
amount of vegetation. Ecological sites and their descriptions are
mapped and organized through the United States Department of
Agriculture, Natural Resource Conservation Service (USDA-NRCS,
2012).

2.2. Image processing and modeling

To assess rangelands at different spatial and temporal scales, we
focused on the basic ground cover types of bare ground, shrub, and
herbaceous vegetation for several reasons. First, these basic cover
types show less inter-annual variation associated with climatic
conditions compared to responses of individual species. Second,
they can be compared to ecological site descriptions which are
benchmarks currently used in monitoring rangelands. Third, per-
cent bare ground is indicative of water sequestration in a watershed
because it is highly correlated to infiltration (Bailey and Copeland,
1961; Branson and Owen, 1970; Lusby, 1970; Peterson et al., 2009;
Weber et al., 2009). Fourth, each of these general cover types can
be discerned remotely at low cost across large spatial extents.
Finally, the values of these basic ground cover types, when assessed
remotely, can be helpful when making decisions that affect man-
agement decisions such as allotment renewals.

Using ground-based color vertical photography (GBVP) at 2 mm
spatial resolution, we estimated canopy cover for each field site and
used these estimates as training to model percent cover of each
basic ground cover category across the study area using coarser
satellite based (Ikonos 1 m and Landsat 30 m)  imagery (Fig. 2). To
model temporal changes in percent cover we used radiometrically
normalized Landsat imagery collected across time to model the
same general land cover types for each historic image.

2.2.1. GBVP (2 mm resolution) Classification
GBVP images consisted of digital photographs oriented verti-

cally (nadir view) taken with an 18-megapixel, 10 mm focal length,
Canon Digital Rebel T2i camera mounted to a boom attached to an
All-Terrain Vehicle. Site locations were recorded with a high pre-
cision Trimble Omnistar Pro XS GPS with a real-time accuracy of

10 cm.  All GBVP images were collected with the top of the image-
oriented north to facilitate registration with other imagery. The
image scale was calculated with the following equation where
SAW = sensor array width, LH = lens height and FL = focal length:

SAW × LH
FL

= Image Scale

The image scale was multiplied by the length and the width
of the image in pixels (Avery and Berlin, 1992) to create a precise
(±10 cm)  geographic footprint of the image (Fig. 3). Differences in
terrain and ATV uphill or downhill orientation resulted in a differ-
ence in lens height and consequently image scale. On average, the

Fig. 3. This figure diagrams the logistics of the GBVP image footprint. The ATV is
oriented north with the camera and GPS extended behind it. Because the center
point of the photo is known along with the height and focal length of the camera
lens, a very precise footprint of the image is delineate. The average cover of shrub,
herbaceous, litter, and bare ground within the GBVP footprint serve as the enhanced
on-the-ground sample which is the baseline training dataset for the multi-scale
imagery. The Inset shows the actual GBVP platform.
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lens height was 355 cm with a standard deviation of 24 cm,  and the
area of the footprint was 42 m2 with a standard deviation of 5 m2.

Eighty GBVP images were collected during late July and early
August of 2010. This time frame corresponded to maximum vege-
tation greenness. Moreover, it minimized shadow as sun elevation
is maximized during this time of year in the Northern Hemi-
sphere. Images were also captured between 9:00 a.m. and 5:00 p.m.
local time to minimize shadow effects. Sampling locations were
restricted to areas of homogenous vegetation of at least 8.5 m by
5 m to match the nominal image footprint size. Sampling focused
on capturing enough plots to provide a wide range of cover con-
ditions. In other words, within the GBVP training dataset there are
images that recorded low, medium, and high shrub, bare ground,
and herbaceous cover.

After the GBVP images were collected, the percent cover was
assessed for each of the 80 images by classifying the pixel color
values into the three basic ground cover types as well as litter
and shadow (Laliberte et al., 2010) using the Visual Learning Sys-
tems Feature Analyst Software 5.0.0.119TM (2010). For each image,
a minimum of five samples for each of the ground cover types were
digitized as polygons by visually assessing the image and digitizing
small areas of the appropriate ground cover type. The average poly-
gon size was 50 mm2 with a standard deviation of 20 mm2. These
polygons served as training samples to classify the remaining image
pixels on that image using the “Land Cover Feature” and “Manhat-
tan Input Representation” algorithms within the Feature Analyst
Software. This classification resulted in an estimate of percent cover
for the basic cover types of shrub, herbaceous, litter, shadow, and
bare ground for each GBVP footprint.

Each image was classified individually to overcome differences
in soil color, degree of stone cover, and cryptobiotic cover between
images. Because of the inability to differentiate between standing
and laying litter all litter was classified as one class. Shadow was
classified for each image but was not included as part of the per-
cent cover of each category. We,  therefore, assumed that shadow
obscured ground cover in similar proportion across all four cate-
gories (shrub, herbaceous, litter, and bare ground). The influence
of shadow can preclude the applicability of this technique to areas
where a large portion of the canopy is composed of trees. How-
ever, the application of this method to low structured rangeland
vegetation, like sagebrush, should result in relatively small errors
from shadow if images are collected at high solar angles (Laliberte
et al., 2010). Processing of GBVP images were performed by special-
ists with extensive field and image classification experience. Each
GBVP image required approximately 1 h to process.

2.2.2. 1 m-resolution cover mapping
Ikonos imagery was acquired on August 11, 2010 and registered

to 1 m National Agricultural Imagery Program (NAIP) imagery using
a direct linear transform and 10 m digital elevation models with a
root mean square less than 0.05 m.  To map  percent cover across the
landscape, the results of the classification for each GBVP footprint
were used to train the Ikonos 1 m,  4-band, imagery. Percent cover
was modeled with regression tree analysis (RTA) (Homer et al.,
2012) using the four Ikonos spectral bands (band 1, 445–516 nm;
band 2, 506–595 nm;  band 3, 632–698 nm;  and band 4,
757–853 nm), as well as derived brightness and greenness (Horne,
2003), NDVI (band 4 − band 3)/(band 4 + band 3), green normal-
ized difference vegetation index (GNDVI) (band 4 − band 2)/(band
4 + band 2) and a moisture normalized difference index (band
4 − band 1)/(band 4 + band 1) (Homer et al., 2012), as explana-
tory variables. A combination of a regression tree program in R
(R Development Core Team, 2008), and ArcMap 10.1(ESRI, 2011)
were used for analysis. R was used to create the predictive model
and ArcMap was used to apply the model spatially for each image

pixel. The output consisted of four canopy cover maps representing
the percent cover of shrub, litter, herbaceous and bare ground.

2.2.3. Landsat thematic mapper (30 m) percent cover mapping
In order to model percent cover for the coarser spatial resolution

Landsat imagery collected for the same summer (July 19, 2010) as
well as through time, a similar regression tree model was devel-
oped for Landsat imagery using the Ikonos derived percent cover
products as a source of training data. Once the model was  devel-
oped and tested for the July 19, 2010 image, the same model was
applied to Landsat imagery collected in multiple years from 1993
to 2006 and radiometrically normalized to the July 19, 2010 image.
Level 1T Landsat images were downloaded from the United States
Department of Interior-United States Geological Survey (USDI-
USGS), Earth Explorer website (USDI-USGS, 2006) and re-projected
to the UTM zone 12 NAD83 coordinate system to match other data
layers in this study. The 2010 Landsat image was converted to per-
cent reflectance (Chavez, 1996) and normalized for sun angle. To
model three categories of canopy cover (shrub, herbaceous, and
bare ground), the six reflective Landsat spectral bands (band 1,
450–520 nm;  band 2, 520–600 nm;  band 3, 630–690 nm; band 4,
760–900 nm;  band 5, 155–175 nm;  and band 7, 208–235 nm)  were
used. The same spectral indices that were extracted for the Ikonos
image (brightness, greenness, NDVI, GNDVI, and moisture normal-
ized index) as described above were also derived for the Landsat
image using the appropriate Landsat bands.

The three Ikonos derived canopy cover maps of shrub, herba-
ceous, and bare ground were used as training data for the Landsat
derived cover using RTA. We  were unsuccessful in modeling litter
cover with Landsat imagery and do not report it. In order to use
the Ikonos continuous cover data as a training source, the Ikonos
percent cover values were averaged (rounded to the nearest whole
number) for each of the 136,083 Landsat pixels covering the study
area. Hereafter, this will be referred to as Ikonos Averaged Contin-
uous Cover (IACC). Because of computational limitations, a subset
of 1000 IACC pixels was  selected to create the RTA model.

The selection of the 1000 IACC pixel training subset proved cru-
cial in the successful creation of RTA models for Landsat imagery.
The non-linear relationship between multispectral reflectance and
percent cover (Tucker, 1977; Curran, 1980) and the propensity of
RTA to over-fit models (Lawrence and Wright, 2001) required a
proper sampling of the variation in percent cover. An underrepre-
sentation of pixels in the low percent cover categories (e.g., <10%
shrub cover) is the outcome if samples are not carefully selected.
To overcome this sampling problem a stratified sample based on
a transformation that reapportioned the number of samples to
include a higher proportion of low percent cover pixels was cre-
ated. The results of this method proved to more closely match the
Ikonos percent cover prediction than either a strict random or pro-
portionate random sampling (Fig. 4). Therefore, 1000 IACC pixels
were selected as a training sample by transforming the percent
cover frequency of each of the three basic cover types using the
following transformation:

1
percent cover value/number of occurrences

By applying this transformation, the resulting Landsat derived
percent cover more closely matched the distribution of the Ikonos
derived continuous cover.

The pixel frequency stratification specified how many IACC
pixels to select from each one-percent cover increment (0%, 1%,
2%,.  . .,30%, etc.). Samples selected for each percent cover category
were selected based on those aggregated IACC pixels that had the
lowest standard deviation values to ensure low landscape variation
within the candidate Landsat pixels (Liu et al., 2004).
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Fig. 4. This figure illustrates the need for selectively picking sample pixels instead of using a random or proportional sample. Pane 1 is the shrub percent cover estimated
using  the 1 m Ikonos imagery. Pane 2 illustrates the results of the shrub percent cover model of 30 m Landsat imagery if the samples are selected randomly or proportionally.
Pane  3 demonstrates the results of the shrub percent cover model of 30 m Landsat imagery when sample selection is stratified and a higher percentage of low shrub cover
pixels are used in the model.

Once a satisfactory model of percent cover of the three basic
cover types was created for the 2010 Landsat image, it was  applied
to Landsat imagery collected in previous years to temporally assess
percent cover. Historic July Landsat imagery was  selected from the
following years: 1993 and 1995–2006. There was no summertime
cloud free image available for 1994. All images were downloaded
and received the same pre-processing (conversion to reflectance
and solar angle normalization) as the 2010 image. Additionally,
multi-temporal images were radiometrically normalized to the
2010 image using a pseudo invariant features (PIF) process (Schott
et al., 1988; Callahan, 2003; Sant, 2005; Booth et al., 2012).

2.3. Accuracy assessment methods

Accuracy of each output was assessed using several methods
and datasets. Traditional on-the-ground cover sampling was  used
to assess the GBVP image classifications. With the 2010 percent
cover models created from the Ikonos and Landsat imagery, a 5-fold
cross validation was used to determine the accuracy and repeatabil-
ity of the model. The percent cover of shrub derived from the Ikonos
and Landsat imagery was further assessed using independently
gathered on-the-ground techniques. Accuracy of temporal outputs
was determined using historical sagebrush treatments. Changes
in bare ground, shrub, and herbaceous cover were compared to
expected changes in these components from other non-related
studies.

2.4. GBVP accuracy method

The accuracy of the GBVP classification was determined using
color-coded nails. This method was an adaptation of the on-the-
ground cover sampling technique described by Daubenmire (1959).
Three-hundred and sixty nails (5.08 cm in length) were wrapped
in colored tape where each color was correlated to a basic cover
type (white = bare ground, yellow = litter, green = herbaceous, and
blue = shrub). The color-coded nails were then placed within 21 dif-
ferent GBVP footprints so that they would be visible in the image.
The nails were placed in locations that were clearly one of the basic
ground cover types. Each color-coded nail in the photo was iden-
tified and the location point buffered by 6 cm.  If the majority of

classified pixels within the buffer agreed with the color-coded nail,
the cover type was  correctly mapped.

2.4.1. Ikonos and Landsat accuracy methods
In order to estimate the repeatability of the model, a 5-fold cross

validation process was used. The 5-fold cross validation estimated
the expected level of fit of the percent cover models to the inde-
pendent dataset that was used to train the model. This consisted of
using different sample subsets within the training dataset to create
five different models. In each of the five iterations, 80% of the total
samples were randomly assigned as training and 20% as validation.
The validation samples were regressed against the predicted values
of the model to determine the correlation coefficient or R2 value.
The results are reported as a mean and standard deviation of the R2

of the five iterations.
Additionally, accuracy was assessed using an independent study

funded by the Wildlife Federal Aid Project W-82-R that investigated
the effectiveness of six different sagebrush removal techniques
against a control where sagebrush was not removed. This data
set served as an independent validation of the remotely esti-
mated shrub cover. The six sagebrush removal techniques as well
as control plots were replicated three times. Each treatment plot
consisted of a 1.1 ha strip (61 m by 183 m)  surrounded by a 15 m
buffer of untreated sagebrush. Blocks for each replication were
separated by 40 m strips to allow adequate space for equipment
to move from plot to plot (Fig. 5). Shrub cover was assessed in
2001 before treatments began. Following the treatments in 2002,
shrub cover assessments were made for 2002, 2003, 2006, and
2010 (Summers, 2005). These assessments utilized a line-intercept
technique (Herrick et al., 2005) to sample the 21 plots for shrub
cover. The line-intercept shrub cover measurements from each of
the 2010 shrub cover assessments were regressed against the aver-
age shrub cover of each of plots derived from the RTA to determine
a correlation coefficient.

2.4.2. Temporal Landsat accuracy methods
The Landsat temporal percent cover predictions were assessed

with two datasets. The first was the Wildlife Federal Aid Project W-
82-R described above. The second validation data set consisted of
large-scale historical sagebrush removal treatments. The Wildlife
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Fig. 5. Results of assessing percent cover on different image scales. The GVBP classification is illustrated in high detail in the upper left hand corner. The Wildlife Federal Aid
Project W-82-R treatments are shown on the Ikonos shrub cover in the upper right hand corner. The Landsat temporal results (lower half) illustrate the difference in shrub
cover  before and after a treatment.

Federal Aid Project W-82-R validation set consisted of field-based
shrub percent cover measurements in 2001 before sagebrush treat-
ments and in 2002 after sagebrush treatments. The difference in
each plot’s percent shrub cover between 2001 and 2002 as mea-
sured with the line-intercept method was regressed against the
average difference between the RTA derived percent shrub cover
for 2001 and 2002 for each treatment polygon to determine the
correlation coefficient. The second validation data set consisted of
11 large-scale sagebrush removal treatments from 1993 through

2006. These treatments included aerating, disking, and burning. The
ability of the Landsat temporal predictions to detect change was
also assessed using these treatments. For each treatment, a poly-
gon was  delineated within the treatment area and in an adjacent
untreated area that occupied the same ecological site. The differ-
ence in the percent shrub cover of the treated polygon before and
after the treatment was  compared to the difference before and after
the treatment within the untreated polygon. This measured change
was compared to expected changes within sagebrush treatments
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Table  1
The 5-fold cross validation of Ikonos and Landsat percent cover models. Both the
Ikonos and Landsat imagery had high average R2 values and when a 5-fold cross
validation was performed on them with low standard deviations. This indicated the
model was  accurate and repeatable.

Ikonos Landsat

Cover type x̄ R2 s x̄ R2 s

Bare ground 0.82 0.08 0.87 0.02
Herbaceous 0.81 0.13 0.90 0.01
Shrub 0.80 0.11 0.93 0.01

based on literature from other non-related sagebrush treatment
studies.

3. Results

The color-coded nail assessment of the GBVP imagery resulted
in an overall accuracy of 94%. Individual component accuracies
were 99% for bare ground, 95% for litter, 92% for herbaceous, and
90% for shrub. For the Ikonos and Landsat imagery derived cover
estimates, the 5-fold cross validation showed strong correlations
between predicted values and the withheld training samples with
very low standard deviations (Table 1) indicating that the model
was accurate and repeatable. The predicted average shrub cover
values from the 2010 Ikonos and Landsat RTA models were highly
correlated to shrub cover collected independently on-the-ground
on Wildlife Federal Aid Project W-82-R in 2010. The Ikonos RTA
prediction had an R2 value of 0.85 and p-value < 0.01. The Landsat
RTA prediction had an R2 value of 0.81 and a p-value < 0.01.

Shrub cover change predictions for 2001 and 2002 derived from
Landsat imagery were assessed using the difference derived from
the independent field-based Wildlife Federal Aid Project W-82-
R data collected in 2001 and 2002. This resulted in a moderately
strong correlation with an R2 of 0.65 and a p-value < 0.01. Because
treatments were small (60 m by 180 m)  and not oriented directly
north and south there was a considerable amount of pixel mixing
when using the north-south oriented 30 m Landsat pixels. This geo-
metric difference could have influenced the moderate correlation.

Within the 11 large-scale sagebrush removal treatments, Land-
sat derived estimates for treated plots showed an average shrub
decrease of 15% versus untreated plots that had an average shrub
increase of less than 1% (Fig. 6). On average, percent bare ground
increased by 10% in the treated plots and did not change in the
untreated plots. The change in average herbaceous cover was not
significantly different between the treated and untreated plots. The
results of the percent shrub cover measured with Landsat imagery
were congruent with the findings of other sagebrush removal stud-
ies. Wambolt and Payne (1986) showed that multiple sagebrush
removal techniques on average resulted in a 14% decrease of sage-
brush. Fig. 5 illustrates the results of each of the different temporal
and spatial scales analyzed.

4. Discussion

This study incorporated field-based high-resolution imagery,
as an alternative to traditional field plots, to train satellite based
remotely sensed imagery and extract relevant cover information
continuously across a landscape. Estimates of percent cover
derived from high spatial resolution Ikonos satellite imagery was
then used to train Landsat imagery to estimate percent cover over
a large landscape across multiple years. The combination of GBVP,
Ikonos, and Landsat spatial and temporal scales provide a frame-
work that gives a manager a current snapshot of percent ground
cover that can be compared with historic imagery. The ability
to estimate historic percent canopy cover provides important

information to evaluate the effectiveness of previous management
actions as well as guide future management decisions aimed at
maximizing ecosystem services such as the production of food,
fiber, domestic grazing, wildlife, recreation opportunities, carbon
sequestration, and water quality and quantity.

The advantage of GBVP images is that investigators can record
and preserve actual field conditions in space and time. This provides
a more transparent and repeatable field-level estimation of canopy
cover. Field-based high-resolution vertical imagery captures, in
space and time, actual percent cover of the vegetation being mea-
sured. Because of this, a visual history of percent cover can be
maintained for comparison with future assessments or applied
to more advanced classification techniques. This repeatability of
measurements makes field observations more transparent. Addi-
tionally, methodological tests have found that 2000 measurements
per ground sample are necessary to estimate cover when that func-
tional group’s cover is less than 8% (Pilliod and Arkle, 2013). Each
GBVP image contains 18 million measured data points.

Some of the practical limitations of using GBVP images include
shadow in the images and the necessity of manually classifying each
image. Using GBVP images where there is tall vegetative structure,
late season, and or low sun angle will increase shadow and will
likely result in poor results. The results reported in this manuscript
come from vegetative structure less than 1 m.  Manually classifying
GBVP images takes an experienced technician an hour to ade-
quately assess an image. The GBVP classifications in this manuscript
where performed by the technician who  also captured the image.

The Ikonos 1 m scale images were used to map  percent canopy
cover continuously across the landscape at high spatial detail –
a capability outside the GBVP technique as well as traditional
ground-based sampling. Mapping percent cover accurately across
large landscapes provides land managers with evaluative power
not available with limited point-based samples. The power of the
Landsat 30 m derived percent cover maps provides not only the
ability to extrapolate to larger landscapes, but also takes advantage
of the unprecedented 39-year history of the Landsat program. This
unique ability to capture rangeland percent cover for a significant
time period provides managers with a contextual perspective that
is not always (or ever was) available.

Enhanced ground sampling with high resolution, multiple spa-
tial and temporal scale assessments can be used to address many
pressing issues in range management. These include the landscape
level estimation of percent cover, the temporal variation in percent
cover, and assessing impacts due to disturbance and management
prescriptions. These data can address the aforementioned problem
of grazing allotment renewals. BLM grazing allotment renewal is
dependent on the assessment of four standards of rangeland health.
The first three standards are: (1) properly functioning watersheds;
(2) properly functioning water, nutrient and energy cycles; and (3)
water quality meeting state standards. Potentially, each of these
standards can be addressed by estimating percent cover of bare
ground within a watershed and how the extent bare ground has
changed over time.

The fourth BLM standard is “habitat for a special status species”.
Currently, the greater sage-grouse (Centrocercus urophasianus) has
been identified by the Endangered Species Act as a warranted
species for protection. Sage-grouse are a species that depend on
sagebrush communities throughout all phases of its life cycle.
In the Sage-grouse Habitat Assessment Framework (HAF), Stiver
et al. (2010) states that, “monitoring is a primary tool for apply-
ing effective adaptive management strategies in conservation and
fulfilling the commitments in the Greater Sage-grouse Comprehen-
sive Conservation Strategy”. Johnson (1980) described four orders
of habitat selection by sage-grouse across a range of scales. These
orders are scale-dependent and give context to habitat conserva-
tion so policies and practices can work congruently. The process
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Fig. 6. Change in shrub cover detected using Landsat 30 m imagery for each of the sagebrush removal treatments. The average sagebrush cover of each site one year before
treatment was subtracted from the average sagebrush cover post treatment. The same calculation was applied to adjacent untreated areas.

described in this paper provides spatially explicit information at
all four geographic scales. The presence of sagebrush, bare ground,
and herbaceous plants can be assessed over every square meter
throughout the entire extent of sage-grouse habitat. Additionally,
landcover classification projects like the Southwest ReGap (Lowry
et al., 2007) can denote adjacent landcover types (e.g., juniper,
agriculture, cheatgrass, etc.). This provides spatially explicit infor-
mation of the availability, extent, and connectedness of sagebrush
and other important habitat conditions (e.g., riparian areas, roads,
and agriculture) for large geographic extents. It also defines the
shelter and food availability at the site-scale that directly affects
individual fitness, survival, and reproductive potential. This infor-
mation can help guide policies, practices and support mitigation
efforts in a cost effective manner.

5. Conclusion

The authors have demonstrated that the integration of high-
resolution ground-based vertical imagery as enhanced ground
samples with multiple scales of remotely sensed imagery can be
used to effectively model cover components within sagebrush
dominated landscapes. By assessing landscapes with high resolu-
tion imagery integrated with multiple scales of remotely sensed
imagery, validated with traditional on-the-ground methods, the
spatial and temporal limitations of traditional field-based range-
land monitoring can be mitigated. Spatial variation that cannot be
addressed with point-based sampling is overcome by using high-
resolution satellite based imagery. Temporal variation is overcome
with yearly assessments from radiometrically calibrated imagery.
This temporal ability helps evaluate long-term trends in percent
cover and also provides better knowledge of the influence of annual
weather patterns. This technique, applied across time, has poten-
tial to place cover change in a contextual perspective that has not
been available before. In this way, past management practices can

be evaluated for their effectiveness in altering rangeland percent
cover and with this hindsight, improved management prescriptions
can be developed.
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